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Abstract
Deep networks trained on the source domain show degraded
performance when tested on unseen target domain data.
To enhance the model’s generalization ability, most exist-
ing domain generalization methods learn domain invariant
features by suppressing domain sensitive features. Differ-
ent from them, we propose a Domain Projection and Con-
trastive Learning (DPCL) approach for generalized semantic
segmentation, which includes two modules: Self-supervised
Source Domain Projection (SSDP) and Multi-level Con-
trastive Learning (MLCL). SSDP aims to reduce domain
gap by projecting data to the source domain, while MLCL
is a learning scheme to learn discriminative and generaliz-
able features on the projected data. During test time, we first
project the target data by SSDP to mitigate domain shift, then
generate the segmentation results by the learned segmentation
network based on MLCL. At test time, we can update the pro-
jected data by minimizing our proposed pixel-to-pixel con-
trastive loss to obtain better results. Extensive experiments
for semantic segmentation demonstrate the favorable gener-
alization capability of our method on benchmark datasets.

Introduction
Deep learning (Long, Shelhamer, and Darrell 2015; Chen
et al. 2017; Zheng et al. 2021) has achieved breakthroughs
in semantic segmentation, benefiting from the large-scale
densely-annotated training images. Nonetheless, obtaining
the labeled image data for segmentation is time consuming
in real life. For instance, labeling a single image with res-
olution of 2048 × 1024 in Cityscapes (Cordts et al. 2016)
costs 1.5 hours, and even 3.3 hours for adverse weather con-
ditions (Sakaridis, Dai, and Van Gool 2021). An alternative
solution is training with synthetic data (Richter et al. 2016;
Ros et al. 2016). However, CNNs are sensitive to domain
shift and generalize poorly from synthetic to real data.

To deal with this challenge, Domain Adaptation (DA)
methods (Zou et al. 2018; Hoffman et al. 2018; Yang and
Soatto 2020; Kundu et al. 2022) align the distributions of
source and target domains. However, DA assumes that target
data is available in the training process which is hard to ful-
fill in real-life scenarios. Therefore, Domain Generalization
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Figure 1: Comparison of results for baseline (DeepLabV3+
with backbone ResNet50), our method using Self-
supervised Source Domain Projection (SSDP), and using
both SSDP and Multi-level Contrastive Learning (MLCL).

(DG) has been widely studied to overcome this limitation.
DG aims to learn a model on source domain data which is
generalized well on the unseen target domain. The essence
of DG is to learn domain-agnostic features (Li et al. 2018a;
Dou et al. 2019; Chen et al. 2022a).

This work considers Domain Generalization Semantic
Segmentation (DGSS), in which we can only use source do-
main data in training. Existing DGSS methods are mainly
divided into three categories. (1) The normalization and
whitening-based methods utilize different normalization
techniques such as instance normalization or whitening to
standardize the feature distribution among different sam-
ples (Pan et al. 2018; Choi et al. 2021; Xu et al. 2022; Peng
et al. 2022). (2) Generalizable feature learning methods aim
to learn domain-agnostic representation (Chen et al. 2021;
Kim et al. 2022). (3) Domain randomization-based methods
learn synthetic to real generalization by increasing the vari-
ety of training data. (Yue et al. 2019; Peng et al. 2021; Lee
et al. 2022). However, domain randomization methods re-
quire unlabeled auxiliary datasets for generalization.

In this paper, we propose Self-supervised Source Do-
main Projection (SSDP) and Multi-level Contrastive Learn-
ing (MLCL) schemes for domain generalization semantic
segmentation. Specifically, we first design SSDP, aiming to
learn a projection to map the unseen target domain data
to the source domain by projecting augmented data to its
original data in the training phase. Secondly, for augmented



data projected to the source domain, we further propose
MLCL to learn a better generalizable segmentation net-
work by contrasting the features with the guidance of la-
bels at the pixel, instance and class levels. At test time,
given an unlabeled target domain image, we first project
it onto the source domain by SSDP, then segment it by
the learned semantic segmentation model. Extensive exper-
iments show that our SSDP and MLCL schemes improve
the generalization performance of our segmentation model.
Figure 1 illustrates an example of segmentation results by
the baseline method and its improved versions respectively
using SSDP and SSDP+MLCL. Our code is available at
https://github.com/liweiyangv/DPCL.

The main contributions can be summarized as follows.
• We propose a Self-supervised Source Domain Projection

(SSDP) approach for projecting data onto the source do-
main, to mitigate domain shift in the test phase.

• We propose a Multi-level Contrastive Learning (MLCL)
scheme, which considers the relationship among pix-
els features, instance prototypes and class prototypes.
In particularly, we propose to deal with pixel-to-pixel
contrastive learning as a Transition Probability Matrix
matching problem.

• We apply our method to urban-scene segmentation task.
Extensive experiments show the effectiveness of our
DPCL for domain generalization.

Related Works
Domain Generalization
Domain generalization attempts to improve model general-
ization ability on the unseen target domain. As for classifica-
tion task, domain generalization is mainly based on domain
alignment of source domains to learn domain-invariant fea-
tures (Li et al. 2018b; Matsuura and Harada 2020), meta-
learning to learn generalizable features (Dou et al. 2019;
Chen et al. 2022a), or data augmentation to expand source
data to improve generalization capabilities (Li et al. 2021a).

As for semantic segmentation, the existing domain gen-
eralization methods can be classified into three categories:
1) Normalization and whitening based-methods utilize In-
stance Normalization (IN) or Instance Whitening (IW) to
standardize global features by erasing the style-specific in-
formation and prevent model overfitting on the source do-
main (Pan et al. 2018; Choi et al. 2021; Xu et al. 2022;
Peng et al. 2022). For instance, ISW (Choi et al. 2021) uti-
lizes IW to disentangle features into domain-invariant and
domain-specific parts, and normalize domain-specific fea-
tures. DIRL (Xu et al. 2022) proposes a sensitivity-aware
prior module to guide the feature recalibration and fea-
ture whitening, and learns style insensitive features. (Peng
et al. 2022) designs a semantic normalization and whitening
scheme to align category-level features from different data.
2) Generalizable feature learning-based methods focus on
learning domain-invariant features, such as utilizing atten-
tion mechanism (Chen et al. 2021) or meta-learning frame-
work (Kim et al. 2022). 3) Randomization-based methods
synthesize images with different styles to expand source do-
main (Yue et al. 2019; Peng et al. 2021; Lee et al. 2022).

DPRC (Yue et al. 2019) randomizes the synthetic images
with the styles of real images and learns a generalizable
model. WildNet (Lee et al. 2022) leverages various contents
and styles from the wild to learn generalized features. Differ-
ent from domain randomization methods, which utilize aux-
iliary dataset to expand source domain data, we adopt a self-
supervised scheme to train a source domain projection net-
work, which projects data with different distributions onto
the source domain. Based on the projected data, we further
propose a multi-level contrastive learning strategy to learn
discriminative features.

Test-Time Adaptation
Test-time adaptation aims to improve the performance of
source trained model against domain shift with a test-time
adaptation strategy. Existing methods are mainly designed
for classification task and can be categorized in two ways.
(1) Update model’s parameters at test time by utilizing self-
supervised loss. Tent (Wang et al. 2021a) adopts entropy
minimization to fine-tune BN layers in the test phase. Ada-
contrast (Chen et al. 2022b) conducts test-time contrastive
learning and learns a target memory queue to denoise pseudo
label. (2) Learn the model to adapt to test data without using
extra loss at test time. For example, (Xiao et al. 2022) learns
to adapt the model’s parameters on only one test data us-
ing the meta-learning framework. Different from the above
adaptation schemes, we update the target data by projecting
it onto the source domain by our SSDP network, then we
iterate the projected data by our pixel-to-pixel contrastive
loss, while fixing the parameters of learned models.

Contrastive Learning
Contrastive learning has shown compelling performance
in representation learning (Wu et al. 2018; Chen et al.
2020a,b,c). Supervised contrastive learning (Khosla et al.
2020) pulls the sample pairs in the same class closer and
pushing away the negative pairs which have different la-
bels to learn discriminative features. (Wang et al. 2021b;
Huang et al. 2022) utilizes supervised contrastive learning
scheme in semantic segmentation to constrain pixel-level
features. Except for pixel-wise contrastive learning, recent
works also utilize other contrastive learning for segmen-
tation, such as prototype-wise (Hu, Cui, and Wang 2021;
Kwon et al. 2021) or distribution-wise (Li et al. 2021b).
Besides traditional InfoNCE loss, (Hendrycks et al. 2020;
Englesson and Azizpour 2021) propose to minimize Jensen-
Shannon (JS) divergence among the predictive distributions
of samples with different augmentation strategies to learn a
robust model. Different from recent work, we define multi-
level contrastive learning for pixel features, instance pro-
totypes and class prototypes. Specifically, we reformulate
pixel-to-pixel contrastive learning based on transition prob-
ability matrix, which shows a better generalization ability in
the experiments.

Method
In this paper, we focus on a Single-source Domain Gener-
alization (SDG) setting. We denote our source domain as
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Figure 2: Overview of our proposed DPCL. (a) Self-supervised Source Domain Projection (SSDP) sub-network aims to project
data onto the source domain. E,D are the encoder and decoder of SSDP. (b) Multi-level Contrastive Learning (MLCL) based
on projected data attempts to learn discriminative features. U is the feature extractor of segmentation network.

S and unseen target domain as T . Notably, T has different
distribution with the source domain. S can be represented
as {(xi, yi)}ni=1, where (xi, yi) denote the i-th image and its
pixel-wise class label, n is the number of samples in S. SDG
aims to train the segmentation model on S and generalize it
to the unseen target domain T .

The proposed method DPCL mainly has two components.
As shown in Fig. 2, we first utilize a Self-supervised Source
Domain Projection (SSDP) block to project data from other
distributions to the source domain. Then, we propose a
Multi-level Contrastive Learning (MLCL) scheme to learn
discriminative features based on projected data. Next, we
will explain our formulation and each module in detail.

Self-supervised Source Domain Projection
The SSDP aims to project data onto the source domain to
mitigate domain shift at test time. Since target data is not
available in training, we can not directly obtain a style trans-
fer network from target to source like domain adaptation
methods (Hoffman et al. 2018). In this paper, we adopt a data
augmentation strategy to generate data with different distri-
butions from the source domain, and project augmented data
to its corresponding original data in the source domain.

We denote our SSDP as a mapping F : T → S. Given
a target data x, it aims to make F (x) close to the source
domain S. Since target domain data is unavailable in train-
ing, we use data augmentation over source domain data to
simulate domain shift in the training phase. We project the
augmented data to original data to learn our SSDP. Specif-
ically, our design of SSDP is shown in Fig. 3. We denote
xa = A(x) as the augmented data, where A is an aug-
mentation function. We input both original data x and aug-
mented data xa into encoder E of SSDP and get feature
fx and fxa

. As for fxa
, we adopt instance normalization to

get normalized feature f̂xa to eliminate its style informa-
tion. Meanwhile, we calculate channel-wise standard devia-
tion and mean of feature fx which contain style information
of x as affine parameters to transform normalized feature
f̂xa

. We assume the transformed feature f̃xa
contains con-

tent information of xa and style information of x. Then we

Figure 3: Illustration of Self-supervised Source Domain Pro-
jection sub-network. fx, fxa are the features of source data x
and augmented data xa, f̂xa

is the feature after instance nor-
malization of fxa

. µ(fx), σ(fx) are the channel wise mean
and standard deviation of fx. f̃xa is the renormalized feature
of f̂xa

. x̃ is the reconstructed original image.

input f̃xa
into decoder D to get reconstructed original data

x̃. Since we only utilize data augmentation to create sample
pair x and xa, our scheme of training SSDP can be regarded
as a self-supervised way.

Formally, we use a standard instance normalization to get
the normalized feature f̂xa

by

f̂xa =
fxa

− µ(fxa
)

σ(fxa)
(1)

where µ(fxa
), σ(fxa

) are the channel-wise mean and stan-
dard deviation of feature fxa

, then we use the same statistics
of fx to transform normalized feature f̂xa by

f̃xa = σ(fx)f̂xa + µ(fx) (2)

Then we input the transformed feature f̃xa
into decoder D



and get reconstructed data x̃. In the experiment,we use L1

loss for enforcing image reconstruction:
Lrecon = ||x− x̃||1 (3)

Different from the traditional autoencoder, the input of our
SSDP is augmented data, the output is its original data in
the source domain. And we adopt AdaIN (Karras, Laine,
and Aila 2019) in the feature space to make SSDP project
augmented data to the original data.

In the test phase, we do not have the paired source
data x to provide source style information for each tar-
get data xt. We use mean and standard deviation cluster
center of source data features to alter σ(fx) and µ(fx) in
Eq. (2). Specifically, we cluster the mean and standard de-
viation of training data features into q centers after train-
ing over the source domain. We denote mean cluster cen-
ters as µS = {µ1, µ2, ..., µq}, standard deviation centers as
σS = {σ1, σ2, ..., σq}. Given a target data xt, we use L2

distance to find the closest center µ̂ of µ(fxt
) in µS , i.e.,

µ̂ = argmin
µ̃

||µ̃− µ(fxt)||2, µ̃ ∈ µS (4)

We can get the closest standard deviation center σ̂ in the
same way. Then we use µ̂, σ̂ to transform the normalized
feature f̂xt by using Eq. (2), and get the projected data by
sending the renormalized feature f̃xt

into decoder D.

Multi-level Contrastive Learning
Based on the projected data by SSDP, we further propose
a multi-level contrastive learning scheme for learning dis-
criminative features. Using traditional cross-entropy as task
loss only penalizes pixel-wise predictions independently but
ignores semantic relationships among pixels. To investigate
the semantics at different levels and their relations, we pro-
pose multi-level contrastive learning for learning model of
semantic segmentation in the feature space. Our segmenta-
tion model consists of feature extractor U and classifier H .

Different from image classification, semantic segmenta-
tion aims to predict class label for each pixel, and there may
exist more than one instance in an image to be segmented.
We consider the semantic class relationship among multi-
level features, including pixel, instance and class levels to
learn discriminative and generalizable features. Specifically,
we adopt prototype for instance-level and class-level fea-
ture representations by average pooling features in each con-
nected region or total area of each class in each image ac-
cording to the ground truth segmentation mask.
Construction of Class Prototype. Taking class-level proto-
type as example, we calculate prototype by average pooling
the features in each class region:

pk =

∑BsH
′W ′

i=1 ykzizi∑BsH′W ′

i=1 ykzi
(5)

where Bs is batchsize, H ′,W ′ respectively denotes height
and width of feature map. yzi is one-hot label for pixel fea-
ture zi, i.e., ykzi = 1, when zi belongs to class k. To obtain
the class prototype in the whole training dataset, we update
class prototypes using moving average strategy by

P̂ k = γP k + (1− γ)pk

… …
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Figure 4: Illustration of pixel-to-pixel contrastive learning.

where P̂ k, P k are the updated and historical class prototype
for class k, pk is k-th class prototype calculated in the cur-
rent training batch, γ is momentum set as 0.999.

We next present our multi-level contrastive learning loss
considering pixel-to-pixel, pixel-to-class and instance-to-
class feature relations in the feature maps. In the following
paragraphs, the features and prototypes are l2 normalized.
The “pixel” in this work represents the pixel in the feature
maps instead of the original image grid.
Pixel-to-Pixel Contrastive Learning. This learning loss is
to constrain the pixels in feature maps having the same class
label should be closer and different class labels should be
distant in the feature space. To realize this goal, we propose
a novel pixel-to-pixel contrastive loss. As shown in Fig. 4,
for the k-th class, we first sample Nk features to avoid mem-
ory explosion when using all pixels in the feature maps. We
denote N as the number of features sampled in a batch, i.e.,
N =

∑K
k=1 Nk, K is class number. We next calculate the

similarity matrix W ∈ RN×N over the sampled pixel-wise
features, in which Wij = exp(zi · zj/τ), “·” denotes in-
ner product, τ is temperature. We can also get the ground
truth label matrix L, which implies the semantic relation-
ship among sampled pixels, i.e., Lij = 1 if yzi = yzj else
Lij = 0. Then, we can calculate the transition probability
matrix W̃ and L̃ by normalizing each row of W and L:

W̃ = D−1
W W, L̃ = D−1

L L (6)

where DW = diag(W 1⃗), DL = diag(L1⃗). We define pixel-
to-pixel contrastive loss by calculating distribution distance
in each row between W̃ and L̃:

Lpp =
1

N

N∑
i=1

M(w̃i, l̃i) (7)

where w̃i and l̃i are the i-th row in matrix W̃ and L̃. Both w̃i

and l̃i in Eq. (7) are in probability simplex, and M(·) is the
distribution distance metric. In this paper, we adopt JS di-
vergence as metric M(·), which is a symmetric divergence.
Note that our pixel-to-pixel semantic similarity loss is dif-
ferent from the supervised contrastive learning loss (Khosla
et al. 2020) in two aspects. Firstly, our loss considers the
feature with itself as positive pair, positioning along the di-
agonal of the row normalized matrix W̃ . Secondly, we use



a symmetric JS divergence as our distribution metric. In the
experiment, we will show that our proposed pixel-to-pixel
contrastive loss produces better generalization performance
than the standard supervised contrastive loss.
Pixel-to-Class Contrastive Learning. This loss is to en-
force that pixel-level features in the feature maps should be
closer to their own class centers, represented by class proto-
types. We introduce our pixel-to-class similarity loss as

Lpc =
1

BsH ′W ′

BsH
′W ′∑

i=1

−yT
zi log

exp(zi · P k/τ)∑
Pa∈P exp(zi · P a/τ)

(8)

where P is the set of class prototypes. Specifically, we use
class prototype P before updating in the current batch to cal-
culate pixel-to-class contrastive loss. In fact, pixel-to-class
contrastive loss is a standard classification loss, to ensure
each pixel can be classified by the class prototype classifier.
Instance-to-Class Contrastive Learning. In addition to the
above losses, we also constrain that the class prototype can
correctly classify each instance prototype, which is com-
puted by average pooling features in each connected region
of each class. We can use contrastive loss like Eq. (8), how-
ever, toughly pulling all different instance prototypes of a
class closer to the class prototype may lose the diversity
of instance-level feature of the class. We adopt the margin
triplet loss (Schroff, Kalenichenko, and Philbin 2015) as our
instance-to-class contrastive learning loss:

Lic =
1

K

K∑
k=1

1

Mk

∑
m,n

max{d(pkm, P k) + ξ − d(p\kn , P k), 0}

(9)
where pkm is m-th instance prototype in k-th class, p\kn is the
n-th instance prototype in all classes except k, Mk is the to-
tal number of instance pairs for class k, ξ is the margin, d
is L2 distance. We can use Eq. (5) to get each instance pro-
totype by substituting the class mask with instance binary
mask. Each binary mask is accessed by extracting the con-
nected region in each class mask as (Wang et al. 2020).
Multi-level Contrastive Loss. Totally, our multi-level con-
trastive loss is defined as

Lmlcl = λLpp + Lpc + Lic (10)

where we only have one hyper-parameter λ in the loss to
balance the contribution of pixel-to-pixel contrastive loss.

Training methods
The training phase of our approach consists of two stages.
First, we use Eq. (3) to pre-train our SSDP network by re-
constructing the original data from augmented data. In the
second stage, we freeze the parameters of SSDP and only
use it for data projection. Based on the projected data, ex-
cept for task loss and multi-level contrastive loss, we utilize
a divergence loss to make class prototypes apart from each
other after each update, which is denoted as

Ldiv =
1

K(K − 1)

K∑
j=1

K∑
i ̸=j

max{P̂ i(P̂ j)T , 0} (11)

Finally, we use the following total loss to train our segmen-
tation model based on projected data in the second stage

Ltotal = Ltask + Lmlcl + Ldiv (12)

where we use a per-pixel cross-entropy loss for semantic
segmentation task loss Ltask. To avoid feature mode col-
lapse by using Lmlcl at the beginning, we warm up our seg-
mentation model only using Ltask for ten epochs and then
use Ltotal to train.

Testing process
In testing, we first project target data by our SSDP to miti-
gate domain shift. Then we send the projected data into seg-
mentation model to generate its prediction for segmentation.
Our class prototypes obtained in the training phase can also
be regarded as a classifier. So we average the softmax proba-
bilities predicted by classifier H and class prototypes (based
on features in the second last layer) to make a more reliable
prediction. Except for standard test process, we also pro-
pose a test-time adaptation scheme by minimizing our pro-
posed pixel-to-pixel contrastive loss. Different from exist-
ing test-time adaptation methods (Wang et al. 2021a; Chen
et al. 2022b), which commonly update model parameters
in the test time process, we fix all the network parameters,
and only optimize the input image of segmentation network,
taking the projected data by SSDP as initialization. Specifi-
cally, given a projected target domain data by SSDP, we first
compute its pseudo label by averaging the predictions from
classifier H and class prototypes, then we randomly sample
one thousand pixel of each class from this image without re-
placement to construct our pixel-to-pixel contrastive loss in
Eq. (7), we iterate the projected data once by gradient de-
scent to minimize the loss, and get the refined prediction of
segmentation mask.

Experiment
In this section, we will evaluate our method on different do-
main generalization benchmarks.

Experimental Setups
Synthetic Datasets. GTAV (G) (Richter et al. 2016) is a
synthetic dataset, which contains 24966 images with resolu-
tion of 1914 × 1052 along with their pixel-wise semantic la-
bels, and it has 12,403, 6,382, and 6,181 images for training,
validation, and test, respectively. SYNTHIA (S) (Ros et al.
2016) is an another synthetic dataset. The subset SYNTHIA-
RANDCITYSCAPES is used in our experiments which con-
tains 9400 images with resolution of 1280 × 760.
Real-World Datasets. Cityscapes (C) (Cordts et al. 2016)
is a high resolution dataset (2048 × 1024) of 5000 vehicle-
captured urban street images taken from 50 cities primarily
in Germany. BDD (B) (Yu et al. 2020) is another real-world
dataset that contains diverse urban driving scene images in
resolution of 1280×720. The last real-world dataset we use
is Mapillary (M) (Neuhold et al. 2017), which consists of
25,000 high-resolution images with a minimum resolution
of 1920×1080 collected from all around the world.
Implementation Details. We use ResNet50 (He et al. 2016),
ShuffleNetV2 (Ma et al. 2018) and MobileNetV2 (San-
dler et al. 2018) as our segmentation backbones for the
task GTAV to Cityscapes, BDD and Mapillary and the task
Cityscapes to BDD, SYNTHIA and GTAV. We take SGD



Backbone Method Train on GTAV (G) Train on Cityscapes (C)
C B M Mean B S G Mean

ResNet50

Baseline 28.95 25.12 28.18 27.42 44.91 23.29 42.55 36.92
SW 29.91 27.48 29.71 29.03 48.49 26.10 44.87 39.82

IBN-Net 33.85 32.30 37.75 34.63 48.56 26.14 45.06 39.92
DPRC 37.42 32.14 34.12 34.56 49.86 26.58 45.62 40.69
GTR 37.53 33.75 34.52 35.27 50.75 26.47 45.79 41.00
IRW 33.57 33.18 38.42 35.06 48.67 26.05 45.64 40.12
ISW 36.58 35.20 40.33 37.37 50.73 26.20 45.00 40.64

SANSAW 39.75 37.34 41.86 39.65 52.95 28.32 47.28 42.85
DIRL 41.04 39.15 41.60 40.60 51.80 26.50 46.52 41.60
DPCL 44.87 40.21 46.74 43.94 52.29 26.60 46.00 41.63

DPCL+TTA (C) 46.34 40.67 48.28 45.10 52.23 26.68 46.26 41.72
DPCL+TTA (C+E) 46.02 41.14 48.79 45.32 53.30 26.91 47.25 42.49

ShuffleNetV2

Baseline 25.56 22.17 28.60 25.44 38.09 21.25 36.45 31.93
IBN-Net 27.10 31.82 34.89 31.27 41.89 22.99 40.91 35.26

ISW 30.98 32.06 35.31 32.78 41.94 22.82 40.17 34.98
DIRL 31.88 32.57 36.12 33.52 42.55 23.74 41.23 35.84
DPCL 36.66 34.35 39.92 36.98 43.96 23.24 41.93 36.38

DPCL+TTA (C) 39.12 35.86 42.19 39.06 44.18 23.60 42.23 36.67
DPCL+TTA (C+E) 37.94 35.40 41.15 38.16 44.53 23.95 43.49 37.32

MobileNetV2

Baseline 25.92 25.73 26.45 26.03 40.13 21.64 37.32 33.03
IBN-Net 30.14 27.66 27.07 28.29 44.97 23.23 41.13 36.44

ISW 30.86 30.05 30.67 30.53 45.17 22.91 41.17 36.42
DIRL 34.67 32.78 34.31 33.92 47.55 23.29 41.43 37.42
DPCL 37.57 35.45 40.30 37.77 46.23 24.68 44.17 38.36

DPCL+TTA (C) 41.16 36.59 42.94 40.23 46.37 24.76 44.32 38.48
DPCL+TTA (C+E) 39.13 36.86 41.83 39.27 46.76 25.17 45.49 39.14

Table 1: Results for the task G to C, B and M and the task C to B, S and G in mIoU. The best and second best results of methods
without TTA are bolded and underlined respectively. The best TTA methods are also bolded.

optimizer with an initial learning rate of 1e-3, and train seg-
mentation model for 40k iterations with batch size of 8,
momentum of 0.9 and weight decay of 5e-4. We adopt the
polynomial learning rate scheduling (Liu, Rabinovich, and
Berg 2015) with the power of 0.9. We use color-jittering and
Gaussian noise as image augmentation. We also use random
cropping, random horizontal flipping, and random scaling to
avoid the model over-fitting. As for our SSDP subnet, we
adopt the same architecture with generator in CycleGAN
(Zhu et al. 2017) and train it with Adam optimizer. We uti-
lize the same image data augmentation with our segmen-
tation network. In the multi-level contrastive learning, we
sample thirty pixel features in each class from a batch of im-
ages, half of which are with incorrect prediction by segmen-
tation classifier and half of which are with correct prediction
according to their labels. We respectively use q = 10 and
q = 5 for the task trained on GTAV and Cityscapes. The
other parameters are set as ξ = 0.5, τ = 0.1, λ = 5.

Compared methods. Our baseline model is DeepLabV3+
trained by cross-entropy loss in source domain for segmen-
tation. We compare with the DG methods: SW (Pan et al.
2019), IBN-Net (Pan et al. 2018), DPRC (Yue et al. 2019),
GTR (Peng et al. 2021), IRW, ISW (Choi et al. 2021), DIRL
(Xu et al. 2022) and SANSAW (Peng et al. 2022).

Comparison with state-of-the-art methods
As for the synthetic to real generalization, we follow DIRL
(Xu et al. 2022) to evaluate the generalization performance
from GTAV to Cityscapes, BDD and Mapillary. As shown in
Table 1, our method outperforms the other methods clearly
and consistently across three different network backbones,
especially for the task from GTAV to Cityscapes and Map-
illary. When using ResNet50, our method improves per-
formance from 41.04 to 44.87 on Cityscapes dataset and
from 41.60 to 46.74 on Mapillary dataset compared with
DIRL. Except for standard test process, we also show our
method performance with test-time adaptation as discussed
in the subsection of Testing process, which is denoted as
DPCL+TTA (C). As for the backbone of ShuffleNetV2 and
MobileNetV2, our method respectively improves the mIoU
by 2.08 and 2.46 using test-time adaptation. Except for con-
trastive loss, we additionally try TTA by minimizing sum of
entropy and our pixel-to-pixel contrastive loss (normalized
by number of selected pixels), dubbed DPCL+TTA (C+E),
and it further improves performance with ResNet50. We also
visualize the qualitative comparisons with other methods
shown in Fig. 5 to show superiority of our methods DPCL.

We further compare our methods with other methods from
Cityscapes to BDD, SYNTHIA and GTAV, shown in Ta-
ble 1. Our method achieves the best performance with back-
bone ShuffleNetV2 and MobileNetV2, achieves the second



Target data Baseline IBN-Net ISWIRW Ours Ground Truth

Figure 5: Visual comparison of different domain generalization semantic segmentation methods using ResNet50, trained on
GTAV (G) and tested on unseen target domains of Cityscapes (C) (Cordts et al. 2016) and BDD (B) (Yu et al. 2020).

SSDP Lmlcl Ldiv C B M Mean
28.95 25.12 28.18 27.42

✓ 40.13 39.47 43.13 40.91
✓ ✓ 43.68 39.89 45.05 42.87
✓ ✓ ✓ 44.87 40.21 46.74 43.94

Table 2: Ablation study for domain generalization task G
to C, B and M with ResNet50 in mIoU, SSDP denotes our
Self-supervised Source Domain Projection network, Lmlcl

denotes Multi-level Contrastive Learning loss and Ldiv de-
notes class prototype divergence loss.

Method C B M Mean
SSDP (w/ AE) 36.41 34.47 36.61 35.83

SSDP (w/o AdaIN) 43.13 39.77 45.10 42.67
SSDP 44.87 40.21 46.74 43.94

Table 3: Results of different designs of Source Domain Pro-
jection network for task G to C, B and M using ResNet50.

best performance with backbone ResNet50 among the com-
pared methods. Our method DPCL+TTA (C+E) further im-
proves the performance for three backbones.

Ablation Study
We examine each component of our method DPCL to check
how they contribute in the domain generalization on the task
GTAV to Cityscapes, BDD and Mapillary. As show in Ta-
ble 2, the baseline method shows lowest performance on
three unseen target domains. Our method improves baseline
in average accuracy from 27.42 to 40.91 by using our SSDP.
This shows that our SSDP for projecting data can mitigate
domain shift in the test phase. Based on the projected data,
we add our multi-level contrastive learning module, further
improving the performance. Finally, we add diversity con-
straint Ldiv to our class prototypes and produce the best per-
formance, especially in the task GTAV to Mapillary.
Comparison of different designs of SSDP. We compare
different designs of SSDP shown in Table 3. In the first row,
we use a standard Auto-Encoder in SSDP network, denoted
as SSDP (w/ AE), which aims to reconstruct original input
image and obtains 35.83 mean mIoU. In the second row,
we input augmented data into SSDP and directly reconstruct
original data without AdaIN technique in the feature space

Method Scl-CE Scl-JS Ours-CE Ours-JS
Mean mIoU 43.08 43.65 43.46 43.94

Table 4: Results of different choices of pixel-to-pixel con-
trastive loss for task G to C, B and M using ResNet50. Mean
mIoU is obtained over the three target dataset.

named SSDP (w/o AdaIN). It improves the average perfor-
mance from 35.83 to 42.67, which is superior than DIRL.
The last row is the SSDP that we adopt, which reconstructs
the original data from augmented data with AdaIN tech-
nique (Karras, Laine, and Aila 2019) in the feature space
and shows effectiveness in average performance.
Comparison of different choices of pixel-to-pixel con-
trastive learning. In this paragraph, we compare our pixel-
to-pixel contrastive loss with supervised contrastive loss
(Khosla et al. 2020) under the same hyper-parameter setting.
The method Scl-CE is the standard supervised contrastive
loss used in (Khosla et al. 2020). Compared with ours, Scl-
CE discards the diagonal values of W and L and uses cross-
entropy loss (see appendix). Scl-JS masks out the diagonal
vector of matrix W and L, but uses JS divergence as met-
ric M(·). Ours-CE and Ours-JS are respectively our loss us-
ing cross-entropy and JS divergence as metric M(·). Table 4
shows that Ours-JS achieves consistently better performance
than the other variants of losses.

Due to space limit, more visualization results and empir-
ical analysis, e.g., sensitivity to hyper-parameters, ablation
for multi-level contrastive learning loss, data augmentation,
choices of Lic, etc., are in the appendix.

Conclusion

In this paper, we propose a novel domain generalization
semantic segmentation method DPCL, consisting of mod-
ules of Self-supervised Source Domain Projection (SSDP)
and Multi-level Contrastive Learning (MLCL). Comprehen-
sive experiments demonstrate the effectiveness of SSDP and
MLCL in domain generalization semantic segmentation. In
the future, we plan to further improve the learning schemes
on the segmentation model, and try transformer-based back-
bones in our framework.
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