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Abstract
Universal domain adaptation (UniDA) aims to transfer
knowledge from a labeled source domain to an unlabeled
target domain without requiring the same label sets of both
domains. The existence of domain and category shift makes
the task challenging and requires us to distinguish “known”
samples (i.e., samples whose labels exist in both domains)
and “unknown” samples (i.e., samples whose labels exist
in only one domain) in both domains before reducing the
domain gap. In this paper, we consider the problem from
the point of view of distribution matching which we only
need to align two distributions partially. A novel approach,
dubbed mini-batch Prototypical Partial Optimal Transport
(m-PPOT), is proposed to conduct partial distribution align-
ment for UniDA. In training phase, besides minimizing m-
PPOT, we also leverage the transport plan of m-PPOT to
reweight source prototypes and target samples, and design
reweighted entropy loss and reweighted cross-entropy loss to
distinguish “known” and “unknown” samples. Experiments
on four benchmarks show that our method outperforms the
previous state-of-the-art UniDA methods.

1 Introduction
Deep Learning has achieved significant progress in im-
age recognition (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2014). However, deep learning
based methods heavily rely on in-domain labeled data for
training, to be generalized to target domain data. Consider-
ing that collecting annotated data for every possible domain
is labour-intensive and time-consuming, a feasible solution
is unsupervised domain adaptation (UDA) (Ben-David et al.
2010; Ganin and Lempitsky 2015; Long et al. 2018), which
transfers the knowledge from labeled source domain to un-
labeled target domain by alleviating distribution discrepancy
between them. The most common setting in UDA is closed-
set DA which assumes the source class set Cs is identical to
the target class set Ct. This may be impractical in real-world
applications, because it is difficult to ensure that the target
dataset always has the same classes as the source dataset.

To tackle this problem, some works consider more general
domain adaptation tasks. For example, partial domain adap-
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tation (PDA) (Cao et al. 2018a) assumes that target class
set is a subset of source class set, i.e., Ct ⊆ Cs. Open-set
domain adaptation (OSDA) (Saito et al. 2018) exploits the
situation where source class set is a subset of target class set
Cs ⊆ Ct. Universal domain adaptation (UniDA) (You et al.
2019) is a more general setting that both source and target
domains possibly have common and private classes. The set-
ting of UniDA includes PDA, OSDA, and a mixture of PDA
and OSDA, i.e., open-partial DA (OPDA) (Panareda Busto
and Gall 2017), in which both source and target domains
have private classes. This paper focuses on the general
UniDA setting. The goal of UniDA is to classify target do-
main common class samples and detect target-private class
samples, meanwhile reducing the negative transfer possibly
caused by source private classes. To reduce the domain gap
in UniDA, we may use distribution alignment techniques as
in UDA methods (Courty et al. 2017; Ganin and Lempitsky
2015), to align the distributions of two domains. However,
matching all data of two domains may lead to the mismatch
of the common class data of one domain to the private class
data in the other domain, and cause negative transfer.

In this work, we propose a novel Prototypical Partial Op-
timal Transport (PPOT) approach to tackle UniDA. Specifi-
cally, we model distribution alignment in UniDA as a partial
optimal transport (POT) problem, to align a fraction of data
(mainly from common classes), between two domains us-
ing POT. We design a prototype-based POT, in which the
source data are represented as prototypes in POT formula-
tion, which is further formulated as a mini-batch-based ver-
sion, dubbed m-PPOT. We prove that POT can be bounded
by m-PPOT and the distances between source samples and
their corresponding prototypes, inspiring us to design a deep
learning model for UniDA by using m-PPOT as one train-
ing loss. Meanwhile, the transport plan of m-PPOT can be
regarded as a matching matrix, enabling us to utilize the
row sum and column sum of the transport plan to reweight
the source prototypes and target samples for distinguishing
“known” and “unknown” samples. Based on the transport
plan of m-PPOT, we further design reweighted cross-entropy
loss on source labeled data and reweighted entropy loss on
target data to learn a transferable recognition model.

In experiments, we evaluate our method on four UniDA
benchmarks. Experimental results show that our method per-
forms favorably compared with the state-of-the-art methods



for UniDA. Code is available at https://github.com/ycyang-
xjtu/PPOT.

2 Related Work
2.1 Domain Adaptation
Unsupervised domain adaptation aims to reduce the gap be-
tween source and target domains. Previous works (Ganin
and Lempitsky 2015; Long et al. 2015, 2018) mainly focus
on distribution alignment to mitigate domain gaps. The the-
oretical analysis in (Ben-David et al. 2010) shows that min-
imizing the discrepancy between source and target distribu-
tions may reduce the target prediction error. Previous works
often minimize distribution discrepancy between two do-
mains by adversarial learning (Ganin and Lempitsky 2015;
Long et al. 2018; Zhang et al. 2019) and moment matching
(Long et al. 2015; Sun and Saenko 2016; Pan et al. 2019).
Partial DA (Cao et al. 2018b) tackles the scenario that only
the source domain contains private classes. The methods in
(Cao et al. 2018a; Zhang et al. 2018; Gu et al. 2021) are
mainly based on reweighting source data for reducing nega-
tive transfer caused by source private class samples. Open-
set DA (Saito et al. 2018) assumes that the label set of the
source domain is a subset of that of the target domain. (Saito
et al. 2018; Liu et al. 2019; Bucci, Loghmani, and Tommasi
2020) propose diverse methods to classify “known” samples
meanwhile rejecting “unknown” samples.

2.2 Universal Domain Adaptation
Universal DA does not have any prior knowledge on the la-
bel space of two domains, which means that both source and
target domains may or may not have private classes. UAN
(You et al. 2019) computes the transferability of samples by
entropy and domain similarity to separate “known” and “un-
known” samples. CMU (Fu et al. 2020) improves UAN to
measure transferability by a mixture of entropy, confidence,
and consistency from ensemble model. DANCE (Saito et al.
2020) designs an entropy-based method by increasing the
confidence of common class samples while decreasing it for
private class samples to better distinguish known and un-
known samples. DCC (Li et al. 2021) tries to exploit the do-
main consensus knowledge to discover matched clusters for
separating common classes in cluster-level. OVANet (Saito
and Saenko 2021) trains a “one-vs-all” discriminator for
each class to recognize private class samples. GATE (Chen
et al. 2022) explores the intrinsic geometrical relationship
between the two domains and designs a universal incremen-
tal classifier to separate “unknown” samples. Different from
the above methods, we model the UniDA as a partial dis-
tribution alignment problem and propose a novel m-PPOT
model to solve it.

2.3 Optimal Transport
Optimal transport (OT) (Villani 2009; Peyré, Cuturi et al.
2019) is a mathematical tool for transporting/matching dis-
tributions. OT has been applied to diverse tasks such as gen-
erative adversarial training (Arjovsky, Chintala, and Bot-
tou 2017), clustering (Ho et al. 2017), domain adaptation
(Courty et al. 2017), object detection (Ge et al. 2021), etc.

The partial OT (Caffarelli and McCann 2010; Figalli 2010)
is a special OT problem that only transports a portion of the
mass. To reduce computational cost of OT, the Sinkhorn OT
(Cuturi 2013) can be efficiently solved by the Sinkhorn al-
gorithm, and is further extended to partial OT in (Benamou
et al. 2015). In (Flamary et al. 2016; Courty et al. 2017;
Damodaran et al. 2018), OT was applied to domain adap-
tation to align distributions of source and target domains
in input space or feature space. They use OT in mini-batch
to reduce computational overhead, however, suffering from
sampling bias that the mini-batch data partially reflect the
original data distribution. (Fatras et al. 2021; Nguyen et al.
2022) replace mini-batch OT with more robust OT models,
such as unbalanced mini-batch OT and partial mini-batch
OT, and achieve better performance. (Xu et al. 2021) designs
joint partial optimal transport which only transports a frac-
tion of the mass for avoiding negative transfer, and extends
the task into open-set DA.

In this work, we consider the UniDA task. We propose
a novel mini-batch based prototypical POT model, which
partially aligns the source prototypes and target features to
solve the problem of UniDA. Experiments show that our
method achieves state-of-the-art results for UniDA.

3 Preliminaries on Optimal Transport
We consider two sets of data points, {xs

i}mi=1 and {xt
j}nj=1,

of which the empirical distributions are denoted as µ =∑m
i=1 µiδxs

i
and ν =

∑n
j=1 νjδxt

j
respectively, where∑m

i=1 µi = 1,
∑n

j=1 νj = 1 and δx is the Dirac function
at position x. With a slight abuse of notations, we denote
µ = (µ1, µ2, · · · , µm)⊤, ν = (ν1, ν2, · · · , νn)⊤ and define
a cost matrix as C ∈ Rm×n, Cij = c(xs

i , x
t
j).

Kantorovich problem. The Kantorovich problem (Kan-
torovitch 1958) aims to derive a transport plan from µ to ν,
modeled as the following linear programming problem:

OT(µ,ν) ≜ min
π∈Π(µ,ν)

⟨π,C⟩F

s.t. Π(µ,ν) = {π ∈ Rm×n
+ |π1n = µ, π⊤1m = ν},

(1)

where ⟨·, ·⟩F denotes the Frobenius inner product.
Mini-batch OT is designed to reduce computational cost

and make OT more suitable for deep learning. We denote the
collection of empirical distributions of b random samples in
{xs

i}mi=1 (resp. {xt
j}nj=1) as Pb(µ) (resp. Pb(ν)), where b

is the batch size, and k is the number of mini-batches. The
mini-batch OT is defined as

m-OTk(µ,ν) =
1

k

k∑
i=1

OT(Ai, Bi), (2)

where Ai ∈ Pb(µ), Bi ∈ Pb(ν) for any i = 1, 2, ..., k.
Partial OT aims to transport only α mass (0 ⩽ α ⩽

min(∥µ∥1, ∥ν∥1)) between µ and ν with the lowest cost.
The partial OT is defined as

POTα(µ,ν) ≜ min
π∈Πα(µ,ν)

⟨π,C⟩F , (3)

where Πα(µ,ν) = {π ∈ Rm×n
+ |π1n ⩽ µ, π⊤1m ⩽

ν,1⊤
mπ1n = α}.



Figure 1: Illustration of our model. Source and target data share the same feature extractor that embeds data in feature space.
PPOT is to match target features and source prototypes which are updated by the source features, and the row/column sum of
transport plan is applied for reweighting. We design reweighted entropy loss to align common class features of two domains,
while pushing away the unknown features.

4 Method
In this section, we model UniDA as a partial distribution
alignment problem. To partially align source and target dis-
tributions, the mini-batch prototypical partial optimal trans-
port (m-PPOT) is proposed. The m-PPOT focuses on the dis-
crete partial OT problem between source prototypes and tar-
get samples for mini-batch. Based on m-PPOT, we design a
novel model for UniDA. We also use contrastive pre-training
to have a better initialization of network parameters.

In UniDA, we are given labeled source data Ds =
{xs

i , yi}mi=1 and unlabeled target data Dt = {xt
j}nj=1 .

UniDA aims to label the target sample with a label from
source class set Cs or discriminate it as an “unknown” sam-
ple. We denote the number of source domain classes as
L = |Cs|. Our deep recognition model consists of two mod-
ules, including a feature extractor f mapping input x into
feature z, and an L-way classification head h. The source
and target empirical distributions in feature space are de-
noted as p̄ =

∑m
i=1 piδf(xs

i )
and q̄ =

∑n
j=1 qjδf(xt

j)
re-

spectively, where
∑m

i=1 pi = 1,
∑n

j=1 qj = 1. With a slight
abuse of notations, we denote the vector of data mass as
p̄ = (p1, p2, ..., pm)⊤ and q̄ = (q1, q2, ..., qn)

⊤ and we
set pi = 1

m , qj = 1
n for any i, j in this paper. Further-

more, the element of cost matrix C is defined as Cij =
d(f(xs

i ), f(x
t
j)), where d is the L2-distance.

4.1 Modeling UniDA as Partial OT
(Ben-David et al. 2006, 2010) presented theoretical analysis
on domain adaptation, emphasizing the importance of mini-
mizing distribution discrepancy. However, it can not be sim-
ply extended to UniDA because the source/target data may
belong to source/target private classes in UniDA setting. Di-
rectly aligning source distribution p̄ and target distribution
q̄ will lead to data mismatch due to the existence of “un-
known” samples in both domains. For UniDA task, we first
decompose p̄, q̄ as

p̄ = (1− β)pp + βpc, q̄ = (1− α)qp + αqc,

where pp (resp. qp) denotes distribution of source (resp. tar-
get) private class data in feature space, pc and qc are denoted

as source and target common class data distributions, α and
β are the ratio of common class samples in the source and
target domain respectively. Our goal is to minimize the dis-
crepancy between pc and qc, formulated as an OT problem:

min
f,π
⟨π, C̄⟩F = min

f
OT(pc, qc), (4)

where C̄ ∈ R|pc|×|qc| is a submatrix of C, corresponding to
the common class samples.

Obviously, we can not directly get these two distribu-
tions. Therefore, we consider to find an approximation of
Eqn. (4). Following the assumption in (You et al. 2019) that
qc is closer to pc than qp, meaning that the cost of trans-
port between two domains’ common class samples is gen-
erally less than the cost between two private class samples
of these two domains or the private and common class sam-
ples of them. Note that partial OT only transports a fraction
of the mass having lowest cost to transport. With the above
assumption, the partial transport between two domains will
prefer to transfer the common class samples of them. There-
fore, we approximately solve Eqn. (4) by optimizing

min
f

POTα(
α

β
p̄, q̄) (5)

where coefficient (α/β) is to ensure that the mass of com-
mon class samples in p̄ and q̄ equals. The superscript α de-
notes the total mass to transport. For convenience of presen-
tation, (α/β) · p̄ and q̄ are denoted as p and q respectively.

4.2 Prototypical Partial Optimal Transport
We have turned the distribution alignment between pc and
qc into a partial OT problem in Eqn. (5). The remaining chal-
lenge is to embed partial OT into a deep learning framework.
In this paper, we design a mini-batch based prototypical par-
tial optimal transport problem for UniDA. We first define the
Prototypical Partial Optimal Transport (PPOT).
Definition 1. (Prototypical Partial Optimal Transport) Let
{ci}Li=1 be the set of source domain prototypes, defined as

ci =
∑

j:yj=i

f(xs
j)∑m

l=1 1(yl = i)
.



The element of cost matrix Cij is defined as d(ci, f(xt
j)) and

the PPOT transportation cost between p and q is defined as

PPOTα(p, q) ≜ POTα(c, q) = min
π∈Πα(c,q)

⟨π,C⟩F , (6)

where c =
∑L

i=1 riδci is the empirical distribution of source
domain prototypes, and ri =

∑
j:yj=i pj .

PPOT is suitable for the DA task because, first, it fits the
mini-batch based deep learning implementation in which all
of the prototypes, instead of batch of source samples, are
regarded as source measures in POT. This change could re-
duce the mismatch caused by the lack of full coverage of
source samples in a batch, and second, it requires less com-
putational resources than original POT.

Mini-batch based PPOT. We further extend the PPOT to
the mini-batch version m-PPOT, here we assume batch size
b satisfy b | n and set k = n/b. Let Bi be the i-th index set of
b random target samples and their corresponding empirical
distribution in feature space is denoted as qBi

. We define
B ≜ {Bi}ki=1 as a partition if they satisfy:
• Bi

⋂
Bj = ∅ : ∀ 0 ⩽ i < j ⩽ k

•
k⋃

i=1

Bi = {1, 2, ..., n}

and the m-PPOT is defined as

m-PPOTα
B(p, q) ≜

1

k

k∑
i=1

POTα(c, qBi
), B ∈ Γ (7)

where Γ is the set of all partitions of {1, 2, ..., n}, i.e., the in-
dex set of target data. Note that these assumptions are easily
satisfied by the dataloader module in pytorch. Furthermore,
we denote the optimal transportation in i-th batch as πα

i . To
show that m-PPOT is closely related to PPOT, we give the
following proposition 1.
Proposition 1. We extend πα

i to a L×n matrix Πα
i that pad

zero entries to the column whose index does not belong to
Bi, then we have

1

k

k∑
i=1

Πα
i ∈ Πα(c, q)

and
PPOTα(p, q) ⩽ m-PPOTα

B(p.q). (8)
Proposition 1 implies that m-PPOTα

B(p, q) is an upper
bound for PPOTα(p, q). The following theorem shows that
POT is bounded by the sum of m-PPOT and the distances of
source samples to their corresponding prototypes.
Theorem 1. Considering two distributions p and q, the
distance between f(xs

i ) and corresponding prototype cyi

is denoted as di ≜ d(f(xs
i ), cyi

). The row sum of the op-
timal transport plan of PPOTα(p, q) is denoted as w =
(w1, w2, ..., wL)

⊤, ri =
∑

j:yj=i pj . Then we have

POTα(p, q) ⩽
m∑
i=1

wyi

ryi

pidi + m-PPOTα
B(p, q). (9)

The proofs of theorem 1 and proposition 1 are included in
Appendix.

4.3 UniDA based on m-PPOT
Our motivation is to minimize discrepancy between distri-
butions of source and target common class data, meanwhile
separating “known” and “unknown” data in both domains in
training. We design the following losses for training.

m-PPOT loss. Based on theorem 1, to minimize the dis-
crepancy between pc and qc, we first design the m-PPOT
loss to minimize the second term in the bound of theorem 1.
We introduce the m-PPOTα

B(p, q) as a loss:
Lot = E

B∈Γ
(m-PPOTα

B(p, q)) , (10)

where E denotes the expectation over all target domain data
index partitions in Γ. Using the mini-batch based optimiza-
tion method, this term can be approximated by the partial
OT problem POTα(c, qBi

) over each mini-batch, according
to Eqn. (7). The set of prototypes c is updated by expo-
nential moving average as in (Xie et al. 2018). We use the
entropy regularized POT algorithm proposed by (Benamou
et al. 2015) to solve POT on mini-batch.

Reweighted entropy loss. We further design entropy-
based loss on target domain data to increase the prediction
certainty. The solution π∗ to the m-PPOTα

B(p, q) is a matrix
measuring the matching between source prototypes and tar-
get features. Since the more easily a prototype (feature) can
be transported, the more likely it belongs to a common class
(“known” sample), we leverage the row/column sum of π∗

as indicator to identify unknown samples. Specifically, we
first get the column sum of π∗ and multiply a constant n/α
to make wt ∈ Rn satisfy ∥wt∥1 = n. A reweighted entropy
loss is formulated as

Lpe = −
n∑

i=1

L∑
j=1

wt
ipij log(pij), w

t
i =

n

α

L∑
j=1

π∗
ij , (11)

where pij ≜ σ(h ◦ f(xt
i))j . We take this loss to increase

the confidence of prediction for those target samples seen as
“known” samples.

Furthermore, we follow (Saito et al. 2020; Saito and
Saenko 2021) to suppress the model to generate overcon-
fident predictions for target “unknown” samples by loss

Lne = −
n∑

i=1

L∑
j=1

wu
i pij log(pij), w

u
i = [1− wt

i ]+, (12)

where wu
i depends on wt

i , and higher wu
i for a sample means

higher confidence to be an “unknown” sample. Therefore,
we use Lne to reduce the confidence of those samples which
are likely to be “unknown” samples.

Reweighted cross-entropy loss. This loss is the classifi-
cation loss defined in the source domain, based on the cross-
entropy using labels of source domain data. Different to
standard classification loss, we use the column sum of π∗

to compute weights ws ∈ RL for measuring the confidence
of the “known” source domain prototypes. Then we design
the reweighted cross-entropy loss

Lrce = −
m∑
i=1

L∑
j=1

ws
j1(yi = j) log(σ(h ◦ f(xs

i ))j) (13)



where ws
j =

L

α

∑n
i=1 π

∗
ij is the weight of j-th source pro-

totype representing j-th class center. The weights satisfy∑L
j=1 w

s
j = L and each of them represents the possibil-

ity that each category belongs to a common class. (Papyan,
Han, and Donoho 2020) shows that the cross-entropy based
loss could minimize the distance of features to class pro-
totype. This implies that the reweighted cross-entropy loss
approximately minimizes the first term in bound of theorem
1, in which we use the row sum ws of m-PPOT to approx-
imate the row sum w of PPOT, and use the class-balanced
sampling in implementation to enforce that rj ,∀j, are equal.

Training loss and details. Our model is jointly optimized
with the above loss terms, and the total training loss is

L = Lrce + Lent + η1Lot, (14)

where Lent = η2Lpe − η3Lne. In implementation, we set
η1 = 5, η2 = 0.01, and η3 = 2 for all datasets. The train-
ing process of our method is shown in Fig. 1. In the be-
ginning, we map data in both domains into feature space
by the feature extractor. Source prototypes are updated by
source features in every batch and then we compute the m-
PPOT between the empirical distributions of source proto-
types and target samples, which we also leverage the row
sum and column sum of corresponding transport plan to
reweight in the losses. Lot aims to reduce the gap between
the distribution of “known” samples in both domains, mean-
while Lent enforces the “known” samples to have higher
prediction confidence by decreasing their entropy, and the
“unknown” samples to have lower prediction confidence by
increasing the entropy, in the target domain. Since the clas-
sifiers are learned over the source domain data, this may
align the “known” target domain data to the source domain
data distribution, while pushing the “unknown” target do-
main data away from the source domain data distribution.

Parameter initialization by contrastive pre-training.
Motivated by (Shen et al. 2022), we use contrastive learn-
ing to pre-train our feature extractor. Specifically, we send
both source and target unlabeled data into our feature extrac-
tor and use the contrastive learning method (MocoV2 (Chen
et al. 2020)) to pre-train our feature extractor, then fine-tune
the entire model on labeled source data, and take these pa-
rameters as our model’s initial parameters. We empirically
find that contrastive pre-training also works in UniDA set-
ting in our experiments.

4.4 Hyper-parameters
We notice that α and β are nearly impossible to calculate
precisely in practice, so we propose a method to compute
them approximately. We denote two scalars as τ1 and τ2,
where τ1 ∈ (0, 1], τ2 > 0. To simplify the notation, we use
s(x) = maxσ(h◦f(x)) to denote the prediction confidence
of x. We define α and β as

α =

n∑
j=1

1(s(xt
j) ⩾ τ1)

n
, β =

L∑
i=1

1(ws
i ⩾ τ2)

L
. (15)

The motivation is that we use the proportion of high-
confidence samples to estimate the ratio of “known” sam-
ples in the target domain, and similarly use the proportion
of categories with high weights to approximate the ratio of
common classes in the source domain.

In experiments, we set τ1 = 0.9 and τ2 = 1. In the i-th
iteration of training phase, we first calculate αi by Eqn. (15),
and update α by exponential moving average:

αi ← λ1α
i + (1− λ1)α

i−1.

Then we use αi as transport ratio and αi/βi−1 as coefficient
of Eqn. (5) to compute Lot and its by-product ws. After that
we compute βi by Eqn. (15) and update it as same as αi:

βi ← λ2β
i + (1− λ2)β

i−1,

where λ1, λ2 ∈ [0, 1) are set to 0.001 in our experiments.
Furthermore, to reduce the possible mistakes that identify

a “known” sample as “unknown” sample, we retain only a
fraction of {wu

i }ni=1 that have larger values, and set the oth-
ers as 0. The fraction is set to 25% in all tasks.

5 Experiment
We evaluate our method on UniDA benchmarks. We solve
three settings of UniDA, including OPDA, OSDA, and PDA
but without using prior knowledge about the mismatch of
source and target domain class label sets.

Datasets. Office-31 (Saenko et al. 2010) includes 4652
images in 31 categories from 3 domains: Amazon (A),
DSLR (D), and Webcam (W). Office-Home (Venkateswara
et al. 2017) consists of 15500 images in 65 categories, and
it contains 4 domains: Artistic images (A), Clip-Art im-
ages (C), Product images (P), and Real-World images (R).
VisDA (Peng et al. 2017) is a larger dataset which consists
of 12 classes, including 150,000 synthetic images (S) and
50,000 images from real world (R). DomainNet (Peng et al.
2019) is one of the most challenging datasets in DA task
with about 0.6 million images, which consists of 6 domains
sharing 345 categories. We follow (Fu et al. 2020) to use 3
domains: Painting (P), Real (R), and Sketch (S). Following
(Saito and Saenko 2021), we show the number of common
classes, source private classes, and target private classes in
brackets in the header of each result of tables.

Evaluation. In PDA tasks, we compute the accuracy for
all target samples. In OSDA and OPDA settings, the target
private class samples should be classified as a single cate-
gory named “unknown”. The samples with confidence less
than threshold ξ are identified as “unknown”, where ξ is set
to 0.75 in all experiments. Following (Fu et al. 2020), we
report the H-score metric for OSDA and OPDA which is the
harmonic mean of the average accuracy on common and pri-
vate class samples.

Implementation. We implement our method using Py-
torch (Paszke et al. 2019) on a single Nvidia RTX A6000
GPU. Following previous works (Saito and Saenko 2021;
Chen et al. 2022), we use ResNet50 (He et al. 2016) without
last fully-connected layer as our feature extractor. A 256-
dimensional bottleneck layer and prediction head h is suc-
cessively added after the feature extractor. We use MocoV2



Method Office-31 Office-Home VisDA DomainNet (150/50/145)

(10/10/11) (10/5/50) (6/3/3) P→R P→S R→P R→S S→P S→R Avg

UAN 63.5 56.6 30.5 41.9 39.1 43.6 38.7 39.0 43.7 41.0
CMU 73.1 61.6 34.6 50.8 45.1 52.2 45.6 44.8 51.0 48.3
DANCE 82.3 63.9 42.8 55.7 47.0 51.1 46.4 47.9 55.7 50.6
DCC 80.2 70.2 43.0 56.9 43.7 50.3 43.3 44.9 56.2 49.2
OVANet 86.5 71.8 53.1 56.0 47.1 51.7 44.9 47.4 57.2 50.7
GATE 87.6 75.6 56.4 57.4 48.7 52.8 47.6 49.5 56.3 52.1

PPOT 90.4 77.1 73.8 67.8 50.2 60.1 48.9 52.8 65.4 57.5

Table 1: H-score (%) comparison on Office-31, Office-Home, VisDA and DomainNet for OPDA. Note that we only report the
average H-score over all tasks on Office-31 on Office-Home, and the results for different tasks are in Appendix.

Method Type Office-Home (25/40/0) VisDA (6/6/0)
PADA P 62.1 53.5
IWAN P 63.6 48.6
ETN P 70.5 59.8
AR P 79.4 88.8
DCC U 70.9 72.4
GATE U 73.9 75.6
PPOT U 74.3 83.0

Table 2: Comparison of H-score (%) on Office-Home and
VisDA for PDA setting. “P” and “U” denote PDA and
UniDA methods, respectively with and without assuming
the target label set is a subset of the source label set.

(Chen et al. 2020) to contrastive pre-train our feature extrac-
tor, the number of epochs in pre-training is 100, batch size
is 256, and learning rate is 0.03.

In training phase, we optimize the model using Nesterov
momentum SGD with momentum of 0.9 and weight decay
of 5 × 10−4. Following (Ganin and Lempitsky 2015), the
learning rate decays with the factor of (1 + αt)−β , where
t linearly changes from 0 to 1 in training, and we set α =
10, β = 0.75. The batch size is set to 72 in all experiments
except in DomainNet tasks where it is changed to 256. We
train our model for 5 epochs (1000 iterations per epoch), and
update source prototypes and α totally before every epoch.
The initial learning rate is set to 1× 10−4 on Office-31, 5×
10−4 on Office-Home and VisDA, and 0.01 on DomainNet.

5.1 Results and Comparisons
We compare our method with four PDA methods (PADA
(Cao et al. 2018b), IWAN (Zhang et al. 2018), ETN (Cao
et al. 2019), AR (Gu et al. 2021)), three OSDA methods
(OSBP (Saito et al. 2018), STA (Liu et al. 2019), ROS
(Bucci, Loghmani, and Tommasi 2020)) and six UniDA
methods (UAN (You et al. 2019), CMU (Fu et al. 2020),
DANCE (Saito et al. 2020), DCC (Li et al. 2021), OVANet
(Saito and Saenko 2021), GATE (Chen et al. 2022)). All the
compared methods use the same backbone as ours.

OPDA setting. Table 1 shows the results of our method.
Our method outperforms baselines and achieves state-of-

Method Type Office-Home (25/0/40) VisDA (6/0/6)
STA O 61.1 64.1
OSBP O 64.7 52.3
ROS O 66.2 66.5
DCC U 61.7 59.6
OVANet U 64.0 66.1
GATE U 69.1 70.8
PPOT U 70.0 72.3

Table 3: Comparison of H-score (%) on Office-Home and
VisDA for OSDA setting. “O” and “U” denote OSDA and
UniDA methods, respectively with and without assuming
the source label set is a subset of the target label set.

the-art results on all four datasets. On Office-31 and Office-
Home datasets, our method surpasses all baselines on aver-
age. In larger datasets, VisDA and DomainNet, our method
brings more than 17% improvement over previous methods
on VisDA, and 5% on DomainNet. In general, these results
show that our method is suitable in UniDA tasks, especially
on larger and challenging datasets.

PDA and OSDA settings. Following (Li et al. 2021), we
train our model without any prior knowledge of label space
mismatch in PDA and OSDA settings. We report the results
for PDA setting in Table 2. We can see that our method
achieves better results than other UniDA-based methods (de-
noted as “U”) on both datasets. The “P” denotes the PDA
methods using prior knowledge that only the source domain
has private classes. The results of OSDA setting are shown in
Table 3, our method still surpasses all UniDA methods and
OSDA methods (denoted as “O”) using prior knowledge on
label space mismatch on Office-Home and VisDA datasets.

5.2 Model Analysis
Comparison of m-PPOT with m-POT. To compare m-
PPOT with m-POT (mini-batch based partial OT without us-
ing prototypes) in UniDA, we replace m-PPOT with m-POT
in our method and use the average weight of samples in each
class to replace the prototype weights ws in Eqn. (13), and
the corresponding method is denoted as “POT”. As shown in
Table 4, PPOT surpasses POT in all three datasets, confirm-
ing that m-PPOT performs better than m-POT in UniDA.



Method Office-31 VisDA Office-Home
POT 88.4 66.4 74.2
PPOT (w/o CL) 89.4 58.1 74.3
PPOT (w/o Lpe) 88.4 71.1 76.5
PPOT (w/o Lne) 89.6 67.8 74.4
PPOT (w/o reweight) 86.5 69.9 74.7
PPOT 90.4 73.8 77.1

Table 4: Ablation study for OPDA on Office-31, Office-
Home and VisDA. “CL” means contrastive pre-training.
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Figure 2: (a) Class weight ws in Eqn. (13) on the source
domain. (b) Average weight wt in Eqn. (11) for each class
on the target domain. Task: W→D on Office-31 for OPDA.

Effect of contrastive pre-training. To evaluate the effect
of contrastive pre-training, the contrastive pre-training is re-
moved and the feature extractor is replaced by a ResNet50
pre-trained on ImageNet. The results shown in Table 4 il-
lustrate that performance degenerates in all experiments, es-
pecially in more challenging tasks such as VisDA. Note
that without contrastive pre-training, our model still sur-
passes state-of-the-art methods on Office-31 and VisDA and
reaches a comparable result on Office-Home.

Effectiveness of reweighted entropy loss. To evaluate
this loss, we remove Lpe and Lne in our model respectively.
Table 4 shows that PPOT outperforms PPOT(w/o Lpe) by
2% and PPOT(w/o Lne) by 6% on VisDA dataset.

Effectiveness of reweighting strategy. To evaluate the ef-
fectiveness of our reweighting strategy in Eqns. (13) and
(11), we set ws

i = 1 in Eqn. (13) and wt
j = 1 in Eqn. (11)

for any 0 ⩽ i ⩽ m and 0 ⩽ j ⩽ n. The results of Table 4
show that PPOT(w/o reweight) decreases at least 3% more
than PPOT in all datasets, which means that our reweight-
ing strategy is important in our method. We further visualize
the learned weights of source/target classes in UniDA task
W→D on Office-31 datasets, as shown in Fig. 2. In both
domains, most common classes have higher weights than
private classes, which implies that our model can separate
common and private classes effectively.

Sensitivity to hyper-parameters. Figure 3 evaluates the
sensitivity of our model to hyper-parameters τ1, τ2, η1, η2,
η3, and ξ. Results show that our model is relatively stable
to τ1 and τ2 at the range of [0.6, 0.95] and [0.7, 1.1] respec-
tively, as shown in Fig. 3(b). In Fig. 3(b), we can also see
that the setting of threshold ξ does not impact the perfor-
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Figure 3: Sensitivity to hyper-parameters (a) η1, η2 and η3 in
Eqn. (14), (b) τ1, τ2 in Eqn. (15) and threshold ξ. All results
are for the OPDA setting in task C→A.
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Figure 4: H-score curves of different methods with varying
number of target private classes for OPDA tasks A→P and
P→R.

mance much on our model in range [0.5, 0.9]. Furthermore,
Fig. 3(a) shows that our model is relatively stable to varying
values of η1, η2, and η3.

H-score with varying number of target private classes.
We evaluate our method with different numbers of target pri-
vate classes. Results in A→P and P→R tasks are shown in
Fig. 4, our method outperforms other baselines in all cases.
It shows that our method is effective for OPDA with respect
to different numbers of target domain private classes, and
the performance marginally decreases with the increase of
the number of target domain private classes.

6 Conclusion

In this paper, we propose to formulate the universal domain
adaption (UniDA) as a partial optimal transport problem in
deep learning framework. We propose a novel mini-batch
based prototypical partial OT (m-PPOT) model for UniDA
task, which is based on minimizing mini-batch prototypi-
cal partial optimal transport between two domain samples.
We also introduce reweighting strategy based on the trans-
port plan in UniDA. Experiments on four benchmarks show
the effectiveness of our method for UniDA tasks including
OPDA, PDA, OSDA settings. In the future, we plan to fur-
ther theoretically analyze the mini-batch based m-PPOT, and
apply it to more applications requiring partial alignments in
deep learning framework.
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Fatras, K.; Séjourné, T.; Flamary, R.; and Courty, N. 2021.
Unbalanced minibatch optimal transport; applications to do-
main adaptation. In ICML.
Figalli, A. 2010. The optimal partial transport problem.
Archive for Rational Mechanics and Analysis, 195(2): 533–
560.
Flamary, R.; Courty, N.; Tuia, D.; and Rakotomamonjy, A.
2016. Optimal transport for domain adaptation. TPAMI, 1.

Fu, B.; Cao, Z.; Long, M.; and Wang, J. 2020. Learning
to detect open classes for universal domain adaptation. In
ECCV.
Ganin, Y.; and Lempitsky, V. 2015. Unsupervised domain
adaptation by backpropagation. In ICML.
Ge, Z.; Liu, S.; Li, Z.; Yoshie, O.; and Sun, J. 2021. Ota:
Optimal transport assignment for object detection. In CVPR.
Gu, X.; Yu, X.; Sun, J.; Xu, Z.; et al. 2021. Adversarial
Reweighting for Partial Domain Adaptation. In NeurIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Ho, N.; Nguyen, X.; Yurochkin, M.; Bui, H. H.; Huynh, V.;
and Phung, D. 2017. Multilevel clustering via Wasserstein
means. In ICML.
Kantorovitch, L. 1958. On the translocation of masses. Man-
agement Science, 5(1): 1–4.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NeurIPS.
Li, G.; Kang, G.; Zhu, Y.; Wei, Y.; and Yang, Y. 2021. Do-
main consensus clustering for universal domain adaptation.
In CVPR.
Liu, H.; Cao, Z.; Long, M.; Wang, J.; and Yang, Q. 2019.
Separate to adapt: Open set domain adaptation via progres-
sive separation. In CVPR.
Long, M.; Cao, Y.; Wang, J.; and Jordan, M. 2015. Learn-
ing transferable features with deep adaptation networks. In
ICML.
Long, M.; Cao, Z.; Wang, J.; and Jordan, M. I. 2018. Con-
ditional adversarial domain adaptation. In NeurIPS.
Nguyen, K.; Nguyen, D.; Pham, T.; Ho, N.; et al. 2022. Im-
proving mini-batch optimal transport via partial transporta-
tion. In ICML.
Pan, Y.; Yao, T.; Li, Y.; Wang, Y.; Ngo, C.-W.; and Mei, T.
2019. Transferrable prototypical networks for unsupervised
domain adaptation. In CVPR.
Panareda Busto, P.; and Gall, J. 2017. Open set domain
adaptation. In ICCV.
Papyan, V.; Han, X.; and Donoho, D. L. 2020. Prevalence of
neural collapse during the terminal phase of deep learning
training. PNAS, 117(40): 24652–24663.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS.
Peng, X.; Bai, Q.; Xia, X.; Huang, Z.; Saenko, K.; and Wang,
B. 2019. Moment matching for multi-source domain adap-
tation. In ICCV.
Peng, X.; Usman, B.; Kaushik, N.; Hoffman, J.; Wang, D.;
and Saenko, K. 2017. Visda: The visual domain adaptation
challenge. arXiv preprint arXiv:1710.06924.
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